Opposite effects of Ni2+ on Xenopus and rat ENaCs expressed in Xenopus oocytes.
نویسندگان
چکیده
The epithelial Na+ channel (ENaC) is modulated by various extracellular factors, including Na+, organic or inorganic cations, and serine proteases. To identify the effect of the divalent Ni2+ cation on ENaCs, we compared the Na+ permeability and amiloride kinetics of Xenopus ENaCs (xENaCs) and rat ENaCs (rENaCs) heterologously expressed in Xenopus oocytes. We found that the channel cloned from the kidney of the clawed toad Xenopus laevis [wild-type (WT) xENaC] was stimulated by external Ni2+, whereas the divalent cation inhibited the channel cloned from the rat colon (WT rENaC). The kinetics of amiloride binding were determined using noise analysis of blocker-induced fluctuation in current adapted for the transoocyte voltage-clamp method, and Na+ conductance was assessed using the dual electrode voltage-clamp (TEVC) technique. The inhibitory effect of Ni2+ on amiloride binding is not species dependent, because Ni2+ decreased the affinity (mainly reducing the association rate constant) of the blocker in both species in competition with Na+. Importantly, using the TEVC method, we found a prominent difference in channel conductance at hyperpolarizing voltage pulses. In WT xENaCs, the initial ohmic current response was stimulated by Ni2+, whereas the secondary voltage-activated current component remained unaffected. In WT rENaCs, only a voltage-dependent block by Ni2+ was obtained. To further study the origin of the xENaC stimulation by Ni2+, and based on the rationale of the well-known high affinity of Ni2+ for histidine residues, we designed alpha-subunit mutants of xENaCs by substituting histidines that were expressed in oocytes, together with WT beta- and gamma-subunits. Changing His215 to Asp in one putative amiloride-binding domain (WYRFHY) in the extracellular loop between Na+ channel membrane segments M1 and M2 had no influence on the stimulatory effect of Ni2+, and neither did complete deletion of this segment. Next, we mutated His416 flanked by His411 and Cys417, a unique site for possible heavy metal ion chelation, and, with this quality, most proximal (approximately 100 amino acids upstream of the second putative amiloride binding site at the pore entrance), was found localized at M2. Replacing His416 with arginine, aspartate, tyrosine, and alanine clearly affected amiloride binding in all cases, as well as Na+ conductance, as expressed in the xENaC current-voltage relationship, especially with regard to aspartate and tyrosine. However, similarly to those obtained with the WYRFHY stretch, none of these mutations could either abolish the stimulating effect of Ni2+ or reverse it to an inhibitory type.
منابع مشابه
Opposite effects of Ni on Xenopus and rat ENaCs expressed in Xenopus oocytes
Cucu, Dana, Jeannine Simaels, Jan Eggermont, Willy Van Driessche, and Wolfgang Zeiske. Opposite effects of Ni on Xenopus and rat ENaCs expressed in Xenopus oocytes. Am J Physiol Cell Physiol 289: C946–C958, 2005. First published June 8, 2005; doi:10.1152/ajpcell.00419.2004.— The epithelial Na channel (ENaC) is modulated by various extracellular factors, including Na , organic or inorganic catio...
متن کاملEffects of L-type Calcium Channel Antagonists Verapamil and Diltiazem on fKv1.4ΔN Currents in Xenopus oocytes
The goal of this study was to determine the effects of the L-type calcium channel blockers verapamil and diltiazem on the currents of voltage-gated potassium channel (fKv1.4ΔN), an N-terminal-deleted mutant of the ferret Kv1.4 potassium channel. Measurements were made using a two electrode voltage clamp technique with channels expressed stably in Xenopus oocytes. The fKv1.4ΔN currents displayed...
متن کاملRegulation of CFTR chloride channel trafficking by Nedd4-2: role of SGK1
Introduction: The cystic fibrosis transmembrane conductance regulator (CFTR) chloride (Cl−) channel is an essential component of epithelial Cl− transport systems in many organs. CFTR is mainly expressed in the lung and other tissues, such as testis, duodenum, trachea and kidney. The ubiquitin ligase neural precursor cells expressed developmentally down-regulated protein 4-2 (Nedd4-2...
متن کاملEffects of L-type Calcium Channel Antagonists Verapamil and Diltiazem on fKv1.4ΔN Currents in Xenopus oocytes
The goal of this study was to determine the effects of the L-type calcium channel blockers verapamil and diltiazem on the currents of voltage-gated potassium channel (fKv1.4ΔN), an N-terminal-deleted mutant of the ferret Kv1.4 potassium channel. Measurements were made using a two electrode voltage clamp technique with channels expressed stably in Xenopus oocytes. The fKv1.4ΔN currents displayed...
متن کاملThe S362A mutation block ROMK2 (Kir1.1b) endocytosis in Xenopus laevis oocyte membrane .
Abstract The S362A mutation block ROMK2 (Kir1.1b) endocytosis in Xenopus laevis oocyte membrane . Saeed Hajihashemi1 , 1-Assistant professor, PhD in Physiology, Department of Physiology, School of Medical science, Arak University of Medical Sciences. Introduction: ROMK channel is localized on the apical membrane of the nephron. Recent studies suggest that endocytosis of ROMK chan...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 289 4 شماره
صفحات -
تاریخ انتشار 2005